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As has been nointed out 4in meetings with‘KSFC personnel,

there 1s a natural relatlon between Larlkov chains, matrix theory,
and granh theory. Indeed, Gantrachor 1] derives many results
of the theory of finite larkov chains ffom linear alge™ I _ .2,
the theory of finite matrices, The theory of graphs is tardly
nev, having been used by -uler in the solution of the fa-ous
"Bridges of EBnigsherg" problen. ionig [2] presented additional
applications of the theory in 1916, liovever onlv in this and
the precedin~ decade has the subject besun to receive vridespread

interest, an¢ the field is yet but imperfectly exnlorcd,

Cne intevest, then, In this next quarter, vill be 2 re-
tracihg of the above-mentioned derivation of Gantmacher making
use of granuetheoretic methods, and earryins out such extensions
of this derivation as are of interest in the theory of finite
Parkov chains., Some attention will be riven to the question
of the reducibility and imprimitivity of matrices of large order,
A second objective, time permitting, rill be an attemnt to apnly
the theory of infinitec natrices and graphs to the study of
infinite larkov chains, The reader will apnreciante the different
character of this second objective on recalling that vhereas
the finite matrix is of interest to linear algebra, the study
of infinitc matrices belongzs to the ciscipline of analysis, and

that the theory of infinite sranhs is an asnect of tonnlnov.
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The material contained in the present report concludes the
presentation of the basic aspects of larkov chains., An oral

presentation is planned for sSeptenber.

In order to study the sums of Independent random variable

as liarkov chains, we introduce the functions
KB = Baf¥n=d) Kyl V=l oot =i (=1, k#j)
xfj B § ¥n=35 Kyt 3o KK, y=he gt 1| Xz 4]
vherce for convenlence we take
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The state k 1s called a taboo state, and tle probabilities
introduced here are called taboo transition probobilities, 4

vertal interpretation 1s obvious. lioreover, it is casily seen
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Secall Abel's lema- 1r
(a) Zq“ =4<e »%‘ Sw/-0 Z-roa"s = k7o
(b) 4?04&1/5,/. “as-a<oo %gx Zax-
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we have by tbe (ﬁt O Abel‘ lema that

and =
Sé;:‘o [I(S) = "”" n=e f‘/s h=0 f;]
Since %] dn>0 3 fca > 0 , and by (*) this implies that

ifij

for sopree ¥ 3 o$9<7\ 1, #Hence

; ‘f] >0 o 7
Thus, from lerma 1, it follcms that zf}.
2 nzi!.
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Then by the (b) part of Abel's lemma,

1/" = Jf“ = s91-0 fﬁ‘ fs) <eo
and this completes the proof,

Lemma 3. It

2 cn = Z:;o Gn-v by (mz0)
2" 0<an <K (n&o)
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Proof: Hote that '
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Since £ c¢n be taken as small as we please,
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Iheorem 1. Let i and 3 be arbitrary states such that j is

recurrent, Z<hen -. .

.Ema.t: o have that sy m oy
”"f (34 .«¢ = Z Z ] e
f“ —J’Z;: '; f;’ K ”"Zo’?‘:" i ﬁ] #=o mﬁ'&f‘J
11-’
vhere we take f. —o for V>7,

Since sach summation is actuallyf nite, we may interchange
the order of smation to obtain
§T] ypbjn‘of] —ny/zof]
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£ = . o .
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Recall the

Lemma 3. If »
£ c¢n = ‘Z_:o%—vl’f (r\;o)
2* 0 <4, 24K (n72)
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Then by the letpa =
. < 00 ]
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Lama 5. If i), then

ipif 3 2 = s
Erpof: By lemua 2, part B o
" ¢ ) < o

B =20 7 45 h

Also, since ,,f_‘:, lfj < ©2 ye have by the (a) part of Abel's
lerma that

. o0 » 2 k
, s f . " - A 4
B s = oy B < LR <

s/-0
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Do

/"’7 /jd-)_. s91-0 (f’(S) '¢ﬁ (3) = th‘j ;fu < o

SP/-0 o
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th.zau, It 1 aL,d J are in the same recurrent class, them

ns " ‘/ej
Proor: “I?;, have . =V
ﬁ-' = Z"D ﬂl ‘ ‘

7 fﬁi v _—u—Q
m »” SR .
Edf =2 ZR i L b
n-y
0o &["] =0 for y=m, !e may mterchange the order of summation,
so that Z = Z T m’.f..
,,,o/’q ﬁt o ‘/] "',,,a “»:o ‘7
T ba 0
ake " /l-o rtj > ™
0 m<O
- o TS . d
wm-y ™My W Z? 2
o - . . - “ &
Then Z ‘] - Zﬂ‘ ‘E’ '-V:Zb (3 ‘Tuj +=o J
»>0
‘ls nov apply lerma 3 with
2 -m—V‘ 14
w2l S ki %4
4
4y = /’u v
’,:o ‘ﬂ}
to obtain the result.
demark: If 1§ we define the r.v.'s

1 _1f the process starting in state 1

e W rm) — ? is in state J after n steps without
Uy = Uypym) = having been in state 1 in the interim

0 ) Cthemiise




Then  Elt)= ifif -
and f/:iun) - u;z; E((l,.) = Cr;;

Thus 1t follows from the theorem that iP1j* 1s the expocted

number of visits to state J between successive visits to state 1.

Larpa If 4 and ] belong to the same recurrent class, then

. T

: P 7
Exm ;vﬁ'; ?: /Z,,, uao .%P_‘.:J_ = "rJ fc) Pﬂj

Lamma If 1 and J belong to the same recurrent class,
' *, . '.* /. *
vy = B Agfee

Eroofs It 1s easily verified that

(v)  fwy=gfit) e

(**) "//]-[5)3 “ﬁj{s) ('/3""(5)

Apnly‘!.ng Abel’s Lanma gives

fJ ’afﬂ‘ i
L ¢
2 = o H

hence, as ﬁ;-'at 9 We have

R . IR o

‘ﬁ‘] = ¢fy /thc
leeall the
sheoran: In a positive recurrent periodic class with states
330’1,2,000
/z'.' :” v E 7 =/
aom i TR = TRy, BN
and the 's are uniquely determined by

730, Zﬁ‘-/ ’ ;z'=27/’;

F=o



An immediate consequence of this 1s the
Lorollary: In an irreducible positive recurrent elass with
(- ]
states 0, 1, 250ee the stationary distribution io(‘ltifo

constitutes a convergent positive solution to the system of

equations zx.ﬁ TX (320,050

We shall now show that this property characterizes positive

recurrence.
Ingoren: Let # be an irreducible Farkov chain, If the system
of equations Z Xy fg ITXL (A= 61).0)

has & nontrivial convergent solution fo (e, ZMJ<°°)
then 4} is positive recurrent.
Ppoof: By sin ple iteration we obtain
Z iBt = x5
~->1n<:eI )9/:1‘[ Zl"g?jt' < lea.\ <

this series is absolutely convergent., Let -;;’}2' = M uzi
P

S Ly =4 i X
5 [ - o8 - d x;: ‘-
Z KJPJ" "ZXS: #’ngnﬂ');ng J¢ "m AT

The series on the left 1s absolutely and uniformly convergent

by the Veierstrags h-test S0 that & < .,
O S % = 2 45% TR
U2 T Yam Gi = 4 J

Since X #¢ for some 1 a- d Z/#'/< o0 it follows that £ #9 (s, T >0
so that ,?f 1s positive recurrento
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Zhaorept For a recurrent. irreducible }.C, the positive sequence

*
given by 1};:/’ ’;':o/bc' (,-zr,z,... )

1s a solution of the systen of equations
Z 7 (‘=001
Erpaf By the &f §ut1on of ofo:.
~ 4- Z (Z°P“) f3‘

J:O ,3‘ = "l ﬁ‘,j‘ /)oc ﬁ‘
If the double scries ocn the right 18 convenie_nt then, since it
contains only non-negative terms, it is absolutely convertent,
and we may write

@
vy + Z Z ofoc [14

(*) j-z:o]ﬁb 7o ;;rJ— 6
vhere it remalns to show the convergence of the double series
on the right,

ntd
How @ 4 ofoi c+0
N 4 - = ’
-z O/OJ /#" wil
J:/ 'Foo =

Thus, n' 1#0 ve have in plaee of (*) that

o, —‘ = Z v @" :E
(> 207/3‘ = foi *ngl ﬁ‘ nszoaﬁ‘ O'o

i 1=0, then in place of (*) we have

"
! = Z =1 =
(+*s) Pin ;,tl? ﬁo*“.zg’ §°° %
Thus (“““) and (***) ostablish the required canvergence property,
and, in fact, the theorem, g

Iheoren: For a rocurrent irreducible Markov chain, the system
(1) o= Z%Hz (A“:O,I,?.,...)



10

sublect to the conditions
(2) %=1 2o ({zhZzye )

has a unique solution.

Erpofs 3By the previcus theorem, we have that

%=l L,V = oY (=62,...)
is such a solution, Thus we have to prove that there is no

o8
other solution of (1) satisfying (2). Suppose{4i], 1s suen

f % fic

lultiplying through by fik and surming on 1 gives
= A =
G Z i .Z/’: LAn

The repeated series on the right is convergent (to a)) and, since

a soluticne ZThen

it has only non-negative terms, is absolutely convergent.

Intsrchanging the orders of summation gives

ar Z -.: Z d:
J :Zo e ,f} i ,1
depeating this arpgument gives eventually
@

" .
e = : 36‘ & ;;_:3 (=0, 0,200 )
J:O
Since the F.C, is frreducible and recurrent, for ggeh 1Inz1d RB: 70,
Thus ,Z?/J’z > a4, >0 &=0,4,...5 n=t)
as 4::Z>00

lHext we introduce the quantities
LI pA ' )
WJ" fé ((]‘o',' 2!

Clearly,

i};?&’ and 'ZEzéf QQ&M =1
Thus we nmay regord the Q34 as the transition probabilities of
some I‘o s JThen

- .c;é
ﬂ:;‘ - gu‘#] (Z. @ buc Gy F}" /



and, by repeated applications of this argument, we obtain
» g
59 = 7 Bt
Thus 1t fou%s that ,
Y L-] B 7/‘0/“ = @
so that the Qg4 are transition probabilities of a recurrent

irreducible li,C, Frog theorem I we have

m'f': =i gw(%) =

» %”
But by theor 2 E,e
ﬁ”ﬁ‘o _ L S nE u:--""f:i
m o T o R TR e ﬁ 4

120

° /= ofyi /e, 9 A5 4 Zofh. ,
We ‘have seen tha‘t,’for a recu‘rrent/ irregucible Larkov chain,

the sequence P
%=l , G =ofe  {izh e )
is a positive solution of the system of equations

(*) Jzza‘ﬁ"aﬁ =¥ (Cwo,ighy . o)

and that this solution is unique.

2% \ .y

Also, for a positive recurrent iﬁeduczole Yarkov chain, e have
seen that the positive sequence} 1cg° 13 a solution of (¥) (but
vhich may not satisfy the condition vg=). Thus, 1£F 1s a

positive recurrent 1rreducible larkov chain, ve have that
0 = oﬁ‘ ((‘2 9, /, z

vhere

e = & Llpk .

In considering & recurrent irredueible larkov chain
with transition probabilities Py 3 we were led to define the
transition prcbabilities
(**) 7 j_/fz_

of
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of some larkov ehain Q which was also seen to be irreducible

and rcecurrent.

Suppose nov that#! (and hence Q) is positive recurrent.
In this case we shall call the Markov chain Q with transition
probabilities a4 the paverged urogess of the chain% o Ihe
process Q now admits the interpretation given belov. Suppose
the initial distribution of the state variable is]mly i, Paire =
=% (= o,t,...,w).computmg the conditional probability that the
initial state was J glven that the state after one transition

1s 1 yields, by Baye's rul; y T }
N R e s R L ’_‘J.
;:] 2&;"3/&‘4}‘ 4&2&24} f.c

by the stationarity of the Py g0 By iterating this result, we
have that - »
ﬂ"c
1 - .._d 4 > /)
# = % 7z |
Thus the process Q 1s Indeed “backiward in time" from the process% °

o©
Let £ be a given stochastic matrix and u = i“i{, 2 none

negative sequence, We shall eall u =f"ifr a colum vector, If

Li=zx then u 13 said to be right regular relative to P

Zsé u then v 1s saild to be righﬁ superregular relative to P

Zuz u then u is said to be right subregular relative to P.
fn resuperregular sequence {u{f: is said to be mininal if

oS % ..,;,ig“szo is rerepular.

Thoorent Lot u = ?‘u,f be r superregular wrt B. Then
é,”‘:-,,,'.;u Zﬂ'} (¢=94,..)

~xlsts, and q = {a;(o is an reregular vector wrt R




n : ‘
Moreover, 1f b =§b;§° 1s reregular wrt P and b<W then b< e,
If ve urite =44
tvhere = H=-A

then ¢ 1s minimal Resuperregular.

Proof: Since Pu<u, - ) e A
Zﬂ, 5 5(2/». AU = ?ﬂl'f-f’«i"a < 2 R

A;fv) 21‘— < Z’w-lz’—-

So ﬂ??}l?fl‘-—“'

"
and 1t 1s sasy to see that a = quff’/ =n

We have next to show that a 1s an reregular vector relative
w »
to B sie = F Py
n+i »n v Y prs
§ Pie U = ; %ﬂjfi‘u"s g Ve )E e

As nyw, wo have that

a, = ‘“‘"” Z mZ&KuK
Formally
L Spy T - Pyt TN Ty
»” P ' X

8o that ve have only to show that the interchange of the 1limit
and summation is permitted, Ve have that

A Py V.j <E

JoNe ]
where H(€) 1s large enough. low

. n ” > " u
717 % b e " Bl o bkt (9 T

M
Sf $§lﬂ P:f % Pix e TE
Thus

d¢ = aﬁ*« Z i % g‘.x Ku 51‘5&3 Fig- 63" e

and 1% follous then that

= F4

1060, a 18 r-'r-ef*ular rcl'zt'fve to B,




Now suppose that SR

b = E-‘-h,-"g‘ Su; (¢ 20)

Then 1t follows that - _
b= TR E S FRy (730ire)

. b € '&}:ﬁ‘juj =4a;

A'.t.) b4a

It is trivial to prove that ¢y = w=ay 1s reguperregu’ are
It remains now only to establish that ¢ 1s smtmewsein minimal.

Supposé f«':f{*fo 13 reregular relative to P and that 0%%sc
Then ,¢r= 2r< 2% = P tu-a)=Pu-T4 ‘-'.15.“ ~a

. | R
and since P u—vL, 1t follows that § = O, and this eostablishes
minimal |

the wiEeERNE. proporty.
Inaotam: 4n Irreducible M.C, with transition matrix P 1s
recurrant 1ff every non-negative vector v which is r-super-regular
relative to E 18 a eonstant vector., (Notet By a Honenegative
vector v, we mean v4Z O and VJ)O for some j).
Eroof: Let the 1,C, be recurrent and consider

U 2 }:fqﬂ,' , w30 Vi
First we show that if uq, >0 for some joy them ugdo V-g o Since
the },C, 18 irreducible In3!2fg, > 0 o Then

e gz fe s > o

vhere k 1s arbitrary. HNow let k be fixed and set£ =,/ Uw o Then

52 Ze T G tyh e

Iterating this inequality gives ‘
£z 532“ Pej LZ. Pisss +Pic +0ix

» L5 + T piqPik YPik
ot og‘:hx
> j}s'_“ ?“IPT‘?" + Foe Tl
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A second 1teration glves 3or
o +
£2 2, . fiPiepata Tric v R
And, by inductigl, ”
_i ney ut 'fx =

since the chain is recurrent and irreducible. ZThus

= 1/{/7(,( 21
4:8., ' 2 #
Since 1 and k are arbitrary, o
U = Uy ys',k
To prove the converse, assume the chain is nonrecurrent
'x— ~
and set .-gﬁ“ ‘( #%
Lf 2 i ¢ =K

* . - . ’ -
u = f;: =j${ pifix thee 'j:f:j % (C#k)
and ¥ . .l - o A
ﬂ‘=l2ﬂx ‘j-ﬁﬁ‘]{]&*f‘\‘ }fjﬁj

so that u 1s r-superreogular., Now suppose that u 1s a constant
vector, 1.e., that % -fj,, :IV]ﬂ o - Then

r ¥
ol = B Difie o 2 T b x> ey S
vhich contradicts the assmption of nonrecurrenee.

Iheoren: For a recurrent ir:?educible Harkov chain, the system
@

(1) v Aig:o"fj'ﬂﬁ (€=002,.00)

vhere )

(2) ¥ o=l vy 20 Ce=1,2,,..

has a unique solution.
Epoof: We have seen that v, =,,ﬂ¢'f is a solution of (1) with >

raplaced by = and vhich satisfies (2). Let )

> 1:'1' (61':0}/)2)..\

b




16
8o that 4?0 and -
L2 vk ==
E ’t] 120 jgo ;h‘ ﬂ 1
so that //{,j// 1s a stochastic matrix. DMNoreover,
n

. B
A s

and the process Q is also raecurrent and irreducible,

?

Suppose nau that ic,f, 1s & solutfon of (1) satisfying (2),
Then E ¢ = &
RLE RIS
Thus $¢; /v;.}o 1s resuperregular relative tL Q, and, by the

provious theorem, is constant. Since cq = 1 = v, We conclude

that ¢y = V1.

SUis OF INDEP.IIDLMT RANDOL. VARTABLES AS ARKCV CIilATIS

Lot X34 Xpyeee be a sequence of integer-valued, independent,
identically distributed »ev.'s and define Sn = x; * X2 *eeexp
(n =1, 2y60e)o Take 5o @ Os Ve have seen previously that
the sequence Sy determines a Markov chain, The Initial state
is zero siisw Sy g O, and the state space 1s the colleciion of
integers. The special feature of the lMarkov chain isni i1s 1ts
"spatial homogenelity” in that

fi 2 §Sn =1 | Snes 24§ = Pogi = Pi-jro

This property 1g easily seen to hold for the nesty; transition
probabllities also, 1.0.,

»” » »n
£ = kg4 =Fege
forg +& +0

ﬁ; :k=£ ﬁ'kf“j = kéwﬁ‘,m‘t' f&f[,j.
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By the spatial homogeneity of the lestep transition probabilities,

Jorve For 5 [rte] = fr4

$00 .-
hence ﬁ} =k,.Z¢ Pex f’,g,j.,i = f,’j- A

The vresult may now be established easily by inductione

In vhat follows we shall assume that the Markov chain of
the process ?SD}, vhich has he transition matrix ”ijl vhere
Fij --ﬁfsn"':ﬂsn-c =£} is irreducible, and we shall also assume that
x1 is a nondegenerate rov., i.,e., that it has at least two

possible valuese.

We shall also have need of CGreen's function, defined by
6‘ Z M

g “mee

vhere, obviously,

Larpgs
”
S 60 (7’ 0 )): )

for all 4 and jo In particular, as npyem.
52‘1 < %o
Epogf: Ve have "

] n m < m .
é;j =x§of‘). = m{'-o fi-gro = (-3

80 that it suffices to Igove

£ < G,

60

42 u-ﬂ,,_
for all n20 and all 1‘ Nw_jl » /
& :ZP}:- f‘. foo’}ﬁ”zﬁ9 n

How ) <
S < 1



s I |
o E/ﬁk/: E/X.l~ ‘J"’I (k223000

e . A= EK) = Z il = ©

fa-o0
then the Markov chatn § 5, 4s recurrent.

Bepark: Since 2(X;) = 0 and X7 13 a nondegenerate TeVey VO

infer that there are positive and negative values which Xy may
achieve vith positive probability. The assumption that the

Markov echain {an is irreducib;].e enables us to make use of Corollary
Zsly Chapter 2, 1.e., we have to establish only the recurrence

of a single state, say, the zaro state,

Proafit Ve have by the lemma that 6:; SG-: for all j and for

all nZ 0, lence, "

M »”
L X s
2m¢ J:-M - -
Dut o« e ML n WM om >3 B
‘:56 . =]‘= “ mé.o ] =n§o 5?-‘,“” — W0 <My

Since S), is the sum of k independent identically distributed
ToVo with finite mean =0, the weak law of large nucbers is
applicable (Lhinci:ine's Theorem), 1.e.,
Gl [<em Gf /2] 258 24  ae m —o
vhere £2 0 1s arbitrary. Nov, clearly, we have
fitonl <me§ = T g fd

Thus the law of large numbers (weak) may be expressed as
) A6) = bflonl< me f"’,g/%rmﬂf"i Tl sem-»o
Then, taking M= Ing Jeives L u

@m = 2[21:]4-1. »5 wsﬁ[m]e:’ - “‘ﬂ‘” w=o 'j'

> Y, o ZH,,(E.)
— zf,,g}*-i n+i  w=o

M
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By (%), we sece that
N R A

7/+/ m=0

|

Also, we hav:J,:’nat Cowl _ L
Mmoo 2ucltl = ppoe 2N +1 2
so that é,, A
Hyoo — ZE
Since £>© may be chosen gﬁrjoitrarily small, we have shown that
4,” — o0 }
308 ;00 = 900 = &a + ¢
i.6., the state zero, and hence the chaini Sn{, 1s recurrent.

Theoran: If
ENSZ /J/ﬁj <o
] = fJfJ?éo

and
= EX] = 5
(uhere 1 = 1, 2,es.) then the Morkov chain i Sy 1s transient,

Proof: Let 'y denote the event ISp = 0f. Ve recall that the

condition for recurrence may be formulated as
1 iff 53;1( is recurrent

0 1iff isn'f 1s transient.

Pr § Ay occurs of ten{ 2
We shall make use of the strong law of large numbers?

ffc ;naaﬁ " “»“f’ I .
Consider the events
=l 2-n[>TF =hz.)
Any realie

vith C being the event that Cp oémlrsé for#many n o
= obviously does not

zation of the process for vhich pow n =M
But then, by the law of large numbers,

belong to the event C.
ince the event Ay implics the event € ; so

#icf=0.
Apnc €,



we have
Pr{ Ay occurs ® oftenf< Prfc¥
from which we see that { Sn} is transient,

Lamat If the Markov chain{ S,] 1s recurrent, then 1t 1s null

recurrent,
Broaf: DBy spatial homogeneity, we have
"’-;4;:; 1l T nma ﬂo o ("‘Izi" ')

+©
so that Z S0 would mply_g “=a o a contradiction, Therefore

7#; zo (C=0,1,,,. )
Since{ Snz 1s either recurrent or null recurrent, we have

g2
that ﬁ]. >0 2e I > @

Theorens relating to the rate of convergence of ‘903 to zero
are ealled local linit theorems, To develop some of thesc, we
will have used of the characteristic funetion defined below.

Definitions If X 1s an integer-valued random funetion and
Pr§ Xk} =Pk thon the characteristic funetion of X is

defined to be 9%(@)- Z l’xe —E[e“"eJ (—TC6<T)

llote that the defming series is absolutely and uniformly

convergeite

Lorma:  If X1, X5,00e4%n are integer valued random functions
and Sp = X) + Xp +oeo¥n, then < ()=H#[0) 4,0 .. . H (6
Broofs Suppose n = 2 and that

{‘.’A;X;:j}‘ a ﬂ;f,{,_:jf: [J’;oj;ﬂ'ilr..).

= AN A +“ )
Y7 fyl*xz "];‘ veed g'—‘)fr—"dnéﬂl*—‘qu* f47 °+ L'




21

{6 2
Z a‘“b‘ a
© = L (B )< k0 16
The general result now follows trivially by induction. A

Supnose now that Xy,ee0y Xy are as before, but that they
have the same distribution. Then
P:]' = faf Sn"i}
in particular,

Ihen the above lemma may be used to deduce the
Corollary? m e

%0 =[] = Z o ®
4+ .
Erols ),:7_::0&\:8“9—.-. 5"°J EI#{:e(x.’fxw-i-xn\E] '“'5[
-_-/Tvg/o) =(4 @]
3¢

L&G}

Dafinition® Ue shall say that X is a periodic random variable
1re &f)’:ﬂ})O_p A€ fwwtcln.:o,;k h22,00 0 ) (cl#l}
vhare r, v, ¢ are integers, w and ¢ belng fixed,.

It 1s easy to see that, if { Sn} is periodie, then the X
are periodlc, but that the converse does not hold gnerally.

Zheoram: A r.ve X 1s pariodic iff its characteristic funetion
6= I twe”®
AO= ey

satisfies
Ip6)]= 1
for some & #0 , - £6,4T
Proof: Suppose such a 6, exists. Then there 1s a real number
WIH4(E) = g‘wa°

e c“Podig) +Zw ?ove° ok - Z pvcolvol t < Zf“ s (v-22)80
/ = V2o



Ao

80 1= 2 v dva-(f"w\)ee

Yr-00

‘o
Sinee Z foy = ¢ Ve must have, for those ¥ for vhich@,,> 0

Y= ~oo

that cos (v-w)@o =1, and this implies
Y= w+ 29‘:.&-—-
where r 1s any integer. Setting r=0 shows that v is an mteger;
and setting r=1 showe e= Egot 1s an Integer, Obviously, jc]#1,
From this 1t follows that X can attain only values of the form
w+ane (.n:O,:H,:}:Z,...)

vhere w, ¢ are integers and |cl#1 1.,e. X 1s periodic,

Conversely, suppose the possible values of X are contained
in the set f winc |n= =0,x,. } |

vhere w, ¢ are }ntegcrs wvith 0#/ll# 1 « Then
H(6) = f fo,m—nc. Dﬁﬂz[(w*-m liel
S0

and 2 bowtne =1
RZ-©
Let §,= znle noting that &0 ,-T< & 1T ‘
' m‘uw/c axin zm,%aq% . ik
F§) = #( a’) S s ..G’OMM € = e & pprc
so that

[#8)] = |H(E)] = L

and this ecompletes the p ocof, B

Lerma® There 13 a eonstant 450 3
/- BIAB)] > Yt (-KL@s<K)

vhen X 1s an aperiodic reV.

Erpoft Ve have

s~ Krl[#E)T = /-—- Z/éjda.jo 32/%//-&!@\]&



How / - MJ'Q = 2 (Smsg)k

80 pog (6.
/- kW) = ;Z;ﬂa/*" 2)
By the Jordan inequality ,
famx /2 2L (i sy can)

we may write
/- mIFET > ,,,.9 21 B (el<x)

AP Py 9‘2 3ty (1481 €w)

But since /€< 5 the condition /]'é/ € T w11l be not whenever

z
/< T

By choosing 1 so large that /,/‘ Land Po3j> 0 for some ] and taking
| c-,,,,j‘,_j ‘i >0
we have that
/= HelAB)] = co™
for al1 /<" ana C>0.
We have now to ecnsider the case /87T , To ao S0, We
shall make use of the fact that X is an aperiodic r.v.
By the negation of the preceding lemma, we have that
[P®)/ = /Zﬁ,e’ /- (-%58 %)
If =0 o But /¥£/B)/ < 1 13 alvays true.
- >0
/1-BLFR))> [fr— sasraerl]) =1~ /e rPel] z 1- (%)
for all 8#0, -7#fps & , In foot,
71— #zld®)] >0
for all B0 , -7LBLF  sinco / wl01/< 1,

Sinee /—-m)] 1s a continuous function of & on /-%, I/,
Ty v I VY Yk
exists, and is positive (a eontinuous £@3n on a compact set

attains its extrermo)d.




Thus we may write

/- &l£®l)] > m" S
for a11 & 2H/> 7/c

Taking ] = min{C',”%rl) establishes the theorem. J

Iheorens If the reve's X (k=0, 1, 2,...) are nonperiodic,

then for sorie constant A7

fok < A/V)_I-
for all k and all n21l.
Progr: Ve have ‘v

é@)] = Z ﬁl’e

there the sez:‘ies 15 absolutely and unlformly convergent, so

A T ) e v . i,

7 yz-0' -W

I 2 -
n part*cular z” N f[ 'n ;kO

-
-

so < z—'/'n' f /4%)/ %
-7
Since the X are independently distributed, integer=valued
PeVe's we have
#Y AE) =
so that |#1” 15 the characteristic function of the nonperiodic;
Integer-valued rove X = X3 (#l). Let Wid)= @))%, Then;

by the lerma above, there 1s a A0 such that
| — P(e) < A8* (-4 64T

s0 “4,(9_;4 |- AP < ™ v

400
x -AkE
n29 _.I.. —NA“. L e
n [T < [T = | <

M) E() = BN = ()l

b

+0 o
so that am /L é' Ak dw =
R < zx ' Jeo

g



")‘u.
vhere ) J A
Since !4/5)‘<1 (7‘9‘7"‘) s We also have ey L gﬁgﬁ-&
fo < ,,fw e f [THe o < ik [ M= gk T |
80 2n+| A
P <

2n+i
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